
Arduino FSQ Beacon on the
Si5351A Breakout Board
A new digital mode by the name of FSQ has arrived on the scene
lately, and it looks quite interesting. The mode has received
some recent attention as it was featured in an article written
by one of its developers, Murray Greenman ZL1BPU, in the Sep.
2015 issue of QST. According to ZL1BPU’s FSQ website:

FSQ is a Fast Simple QSO mode designed specifically for HF.
It works well under NVIS and sunrise/sunset conditions on the
lower bands, and also works well for short skip and grey-line
on higher bands. It can also be used on VHF FM, and clearly
has a much wider useful range of operating conditions that
other more conventional digital modes. FSQ transmission is
also well within the capability of micro-controller based
devices for low-power propagation transmissions (MEPT and
telemetry).

The QST article describes the modulation scheme as 33-FSK,
with the inclusion of Incremental Frequency Keying (meaning
that an offset of +1 tone is added to each new symbol). The
symbol table is varicode and designed to take advantage of the
number of tones available so that each lowercase letter is
encoded as a single tone, while the rest of the characters are
encoded as two consecutive tones. As mentioned in a previous
app note, the Si5351 is quite easily used to implement
modulation based on FSK at modest rates. Since the author
specifically mentioned that FSQ transmission is within the
capability of microcontrollers for MEPT and telemetry
purposes, it looked like fun to implement a simple Si5351A FSQ
transmitter with an Arduino.

The basic hardware configuration is identical to that used in
the Si5351 Feld Hell beacon. The Arduino firmware from that

http://appnotes.etherkit.com/2015/09/arduino-fsq-beacon-on-the-si5351a-breakout-board/
http://appnotes.etherkit.com/2015/09/arduino-fsq-beacon-on-the-si5351a-breakout-board/
http://www.qsl.net/zl1bpu/MFSK/FSQweb.htm
http://www.qsl.net/zl1bpu/MFSK/FSQweb.htm
http://appnotes.etherkit.com/2015/08/arduino-feld-hell-beacon-on-the-si5351a-breakout-board/
http://appnotes.etherkit.com/2015/08/arduino-feld-hell-beacon-on-the-si5351a-breakout-board/
http://appnotes.etherkit.com/2015/08/arduino-feld-hell-beacon-on-the-si5351a-breakout-board/

project was also used as a starting point for this firmware,
as it already has a lot of the basic program structure (such
as a timer for the modulation rate and a multi-symbol lookup
table). Not knowing how well the mode would work under QRP or
QRPp conditions, for my on-air trials of this transmitter, I
decided to use both my 500 mW linear amplifier and my 20 W
linear amplifier in order to give myself a good chance of
being heard by others. You can see the setup in the photo
featured at the top of the post. The Arduino and Si5351A
Breakout Board are at the left, followed by the 500 mW linear
amp with a low-pass filter on the output, feeding into the 20
W linear amp with another low-pass filter on the output.

After doing quite a bit of testing on a dummy load and
receiving the transmitter signal on my main station rig and
fldigi, I put the FSQ transmitter on the air on 23 August 2015
and asked for QSLs from Twitter hams who wouldn’t mind
monitoring 7.104 MHz for my signal. The beacon was set to send
a sounding transmission every 5 minutes on the main designated
40 meter FSQ frequency. It didn’t take too long before I
received a couple of reception reports for the transmitter
from hams at a decent distance from me.

https://twitter.com/wd3c/status/635637565337542656

https://twitter.com/wm6h/status/635638291086340096

In fact, it worked a bit too well, as I had someone calling me
for a QSO and then asking why I wasn’t responding! The only
reason that I knew this was because I left fldigi running to
monitor my own signal and enough of the other ham’s signal
leaked through my antenna switch that I was able to get a
print in fldigi!

https://www.etherkit.com/rf-modules/si5351a-breakout-board.html
https://www.etherkit.com/rf-modules/si5351a-breakout-board.html

Which leads to an important consideration for you if you
decide to try this new mode in a transmit-only fashion: as of
yet, I have not seen a protocol for MEPT/telemetry uses of FSQ
so I cannot advise you of the proper way of conducting such
transmissions. My current recommendation is that you make it
clear that your transmission is a test or beacon transmission
so that others will not try to call you. Better yet, if you
have others who are working with you, it would probably be
prudent to QSY a bit so as not to be clogging up the main
channel with your messages. And of course, never leave your
transmitter running unattended if you are in doubt of the
legality of such operation in your country.

Since ZL1BPU did mention the use of FSQ in MEPT/telemetry
applications, I do hope to get some clarification from him and
other developers on the proper protocol soon. I believe that
FSQ could have some good potential to be used in such
applications due to the message format used and the lack of
time synchronization needed (like WSPR and JT65/JT9 have).

http://appnotes.etherkit.com/wp-content/uploads/2015/09/fldigi-Hamlib-IC-718-NT7S_001.png

Based on the small amount of QSO operation of FSQ that I have
done so far, I would recommend a 2nd FSQ channel near the main
channel that is devoted to MEPT and telemetry. A couple of
extensions to the message format specifically for MEPT
messages and for telemetry (such as perhaps APRS over FSQ)
would also very extremely handy.

Block Diagram

Bill of Materials

Item Quantity

Arduino Uno (can substitute other variants) 1

Etherkit Si5351A Breakout Board 1

Low Pass Filter 1

Amplifer (optional) 1

RF connectors of choice

Wiring

Terminal
Arduino
Uno Pin

Si5351 SCL A5

Si5351 SDA A4

Si5351 5V 5V

http://appnotes.etherkit.com/wp-content/uploads/2015/08/Si5351FeldHellBockDiagram.png

Terminal
Arduino
Uno Pin

Si5351 GND GND

Usage
Simply load the sketch onto your Arduino Uno, connect the
power and I2C lines from the Uno to the Si5351A Breakout Board
and then connect an appropriate low-pass filter to the output
of the Si5351A Breakout Board CLK0 (or the output of the
amplifier, if you are using one). Connect the output of the
low-pass filter to a dummy load, then provide power to the
Uno, Si5351A Breakout Board, and amplifier (if applicable).
Then use your favorite digimode program and a PC-connected
receiver to monitor your transmission in order to ensure that
your setup is working correctly. Once you are satisfied that
is the case, connect the output of the low-pass filter to an
antenna in order to transmit your FSQ transmitter on the air.
Don’t forget to change your callsign and the message in the
Arduino sketch before you put it on the air.

Extending the Transmitter
With only about 10 to 20 mW of output power, it will be tough
to hear this transmitter barefoot, so some sort of amplifier
would be very useful to bring the output level to a point
where you can reasonably expect to be heard. In the near
future, we intend to publish an example design for a linear
amplifier that will bring the output power up to 500 mW, and
will update this post with the link to it when it is ready.

Arduino Sketch

Required Libraries
Si5351Arduino

Links
Si5351Arduino Library on GitHub
Si5351FSQ.ino sketch on Gist

https://github.com/etherkit/Si5351Arduino
https://github.com/etherkit/Si5351Arduino
https://gist.github.com/NT7S/f22db15865f485c51139

